Optimal Reuse Design Scheduling of Mine Water Based on Improved Whale Algorithm

Author:

Yue Yuangan,Liu Yang,Bo LeiORCID,Zhang Zihang,Yang Hongwei,Wang Yiying

Abstract

The optimal scheduling of mine water is a multi-objective, multi-constraint, nonlinear, multi-stage combination of optimization problems, in view of the traditional solution methods with the increase in decision-making variable dimensions facing a large amount of computation, “dimensional disaster” and other problems, the introduction of a new intelligent simulation algorithm—the Whale Optimization Algorithm to solve the optimal scheduling problem of mine water. Aiming at the problem that the Whale Optimization Algorithm itself is prone to local optimization and slow convergence, it has been improved by improving its own parameters and introducing the inertia weight of the particle swarm and has achieved more obvious results. According to the actual situation of Nalinhe No. 2 Mine, the mathematical model of multi-target optimization of mine water is established based on the function of reuse time and reuse cost of mine water as the target function, and the balance of supply and demand of mine water, the water quality requirements of water use points at all levels, the water quantity requirements of reservoirs and the priority of water supply as the constraints. The improved Whale Optimization Algorithm was used to search optimal solution, and the results showed that the adaptability value of the improved Whale Optimization Algorithm was significantly improved compared with before, of which 8.65% and 7.69% were increased in the heating season and non-heating season, and the rate of cost reduction was 46.80% and 36.92%, and the iteration efficiency was also significantly improved, which improved the decision-making efficiency of optimal scheduling and became more suitable for the actual scheduling needs of Nalinhe No. 2 mine.

Funder

Hebei Provincial Natural Science Foundation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Production scheduling optimization considering ecological costs for open pit metal mines

2. Fugitive coal mine methane emissions at five mining areas in China

3. Technology and engineering development strategy of water protection and utilization of coal mine in China;Gu;J. China Coal Soc.,2021

4. Technical progress of water resource protection and utilization by coal mining in China;Gu;Coal Sci. Technol.,2016

5. Application status and prospect analysis of coal mine water treatment technology;Wang;Goal Qual. Technol.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3