Abstract
A copper sulfide nanoflakes-decorated carbon nanofragments-modified glassy carbon electrode (CuS-CNF/GCE) was fabricated for the electrocatalytic differentiation and determination of hydroquinone (HQ) and catechol (CC). The physicochemical properties of the CuS-CNF were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. The electrocatalytic determination of HQ and CC over the CuS-CNF/GCE was evaluated by cyclic voltammetry and differential pulse voltammetry. An excellent detection limit and sensitivity of the CuS-CNF/GCE are obtained (0.293 µM and 0.259 µM) with a sensitivity of 184 nA µM−1 cm−2 and 208 nA µM−1 cm−2 (S/N=3) for HQ and CC, respectively. In addition, the CuS-CNF/GCE shows a selective identification of HQ and CC over potential interfering metal ions (Zn2+, Na+, K+, NO3−, SO42−, Cl−) and organic compounds (ascorbic acid, glucose), and a satisfactory recovery is also obtained in the spiked water samples. These results suggest that the CuS-CNF/GCE can be used as an efficient electrochemical sensor for the simultaneous determination of co-existing environmental pollutants such as HQ and CC in water environments with high selectivity and acceptable reproducibility.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献