Small-Sized Ship Detection Nearshore Based on Lightweight Active Learning Model with a Small Number of Labeled Data for SAR Imagery

Author:

Geng XiaomengORCID,Zhao Lingli,Shi LeiORCID,Yang Jie,Li Pingxiang,Sun WeidongORCID

Abstract

Marine ship detection by synthetic aperture radar (SAR) is an important remote sensing technology. The rapid development of big data and artificial intelligence technology has facilitated the wide use of deep learning methods in SAR imagery for ship detection. Although deep learning can achieve a much better detection performance than traditional methods, it is difficult to achieve satisfying performance for small-sized ships nearshore due to the weak scattering caused by their material and simple structure. Another difficulty is that a huge amount of data needs to be manually labeled to obtain a reliable CNN model. Manual labeling each datum not only takes too much time but also requires a high degree of professional knowledge. In addition, the land and island with high backscattering often cause high false alarms for ship detection in the nearshore area. In this study, a novel method based on candidate target detection, boundary box optimization, and convolutional neural network (CNN) embedded with active learning strategy is proposed to improve the accuracy and efficiency of ship detection in nearshore areas. The candidate target detection results are obtained by global threshold segmentation. Then, the strategy of boundary box optimization is defined and applied to reduce the noise and false alarms caused by island and land targets as well as by sidelobe interference. Finally, a lightweight CNN embedded with active learning scheme is used to classify the ships using only a small labeled training set. Experimental results show that the performance of the proposed method for small-sized ship detection can achieve 97.78% accuracy and 0.96 F1-score with Sentinel-1 images in complex nearshore areas.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3