Improving Accuracy of Herbage Yield Predictions in Perennial Ryegrass with UAV-Based Structural and Spectral Data Fusion and Machine Learning

Author:

Pranga Joanna,Borra-Serrano IreneORCID,Aper Jonas,De Swaef TomORCID,Ghesquiere An,Quataert PaulORCID,Roldán-Ruiz IsabelORCID,Janssens Ivan A.,Ruysschaert Greet,Lootens Peter

Abstract

High-throughput field phenotyping using close remote sensing platforms and sensors for non-destructive assessment of plant traits can support the objective evaluation of yield predictions of large breeding trials. The main objective of this study was to examine the potential of unmanned aerial vehicle (UAV)-based structural and spectral features and their combination in herbage yield predictions across diploid and tetraploid varieties and breeding populations of perennial ryegrass (Lolium perenne L.). Canopy structural (i.e., canopy height) and spectral (i.e., vegetation indices) information were derived from data gathered with two sensors: a consumer-grade RGB and a 10-band multispectral (MS) camera system, which were compared in the analysis. A total of 468 field plots comprising 115 diploid and 112 tetraploid varieties and populations were considered in this study. A modelling framework established to predict dry matter yield (DMY), was used to test three machine learning algorithms, including Partial Least Squares Regression (PLSR), Random Forest (RF), and Support Vector Machines (SVM). The results of the nested cross-validation revealed: (a) the fusion of structural and spectral features achieved better DMY estimates as compared to models fitted with structural or spectral data only, irrespective of the sensor, ploidy level or machine learning algorithm applied; (b) models built with MS-based predictor variables, despite their lower spatial resolution, slightly outperformed the RGB-based models, as lower mean relative root mean square error (rRMSE) values were delivered; and (c) on average, the RF technique reported the best model performances among tested algorithms, regardless of the dataset used. The approach introduced in this study can provide accurate yield estimates (up to an RMSE = 308 kg ha−1) and useful information for breeders and practical farm-scale applications.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3