Application of Sentinel-1B Polarimetric Observations to Soil Moisture Retrieval Using Neural Networks: Case Study for Bare Siberian Chernozem Soil

Author:

Muzalevskiy Konstantin,Zeyliger AnatolyORCID

Abstract

Sentinel-1 is currently the only synthetic-aperture radar, which radar measurements of the earth’s surface to be carried out, regardless of weather conditions, with high resolution up to 5–40 m and high periodicity from several to 12 days. Sentinel-1 creates a technological platform for the development of new globally remote sensing algorithms of soil moisture, not only for hydrological and climatic model applications, but also on a single field scale for individual farms in precision farming systems used. In this paper, the potential of soil moisture remote sensing using polarimetric Sentinel-1B backscattering observations was studied. As a test site, the fallow agricultural field with bare soil near the Minino village (56.0865°N, 92.6772°E), Krasnoyarsk region, the Russian Federation, was chosen. The relationship between the cross-polarized ratio, reflectivity, and the soil surface roughness established Oh used as a basis for developing the algorithm of soil moisture retrieval with neural networks (NNs) computational model. Two NNs is used as a universal regression technique to establish the relationship between scattering anisotropy, entropy and backscattering coefficients measured by the Sentinel-1B on the one hand and reflectivity on the other. Finally, the soil moisture was found from the soil reflectivity in solving the inverse problem using the Mironov dielectric model. During the field campaign from 21 May to 25 August 2020, it was shown that the proposed approach allows us to predict soil moisture values in the layer thickness of 0.00–0.05 m with the root-mean-square error and determination coefficient not worse than 3% and 0.726, respectively. The validity of the proposed approach needs additional verification on a wider dataset using soils of different textures, a wide range of variations in soil surface roughness, and moisture.

Funder

Russian Foundation for Basic Research

Siberian Branch, Russian Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3