A Dual-Path Small Convolution Network for Hyperspectral Image Classification

Author:

Dang LanxueORCID,Pang Peidong,Zuo Xianyu,Liu YangORCID,Lee JayORCID

Abstract

Convolutional neural network (CNN) has shown excellent performance in hyperspectral image (HSI) classification. However, the structure of the CNN models is complex, requiring many training parameters and floating-point operations (FLOPs). This is often inefficient and results in longer training and testing time. In addition, the label samples of hyperspectral data are limited, and a deep network often causes the over-fitting phenomenon. Hence, a dual-path small convolution (DPSC) module is proposed. It is composed of two 1 × 1 small convolutions with a residual path and a density path. It can effectively extract abstract features from HSI. A dual-path small convolution network (DPSCN) is constructed by stacking DPSC modules. Specifically, the proposed model uses a DPSC module to complete the extraction of spectral and spectral–spatial features successively. It then uses a global average pooling layer at the end of the model to replace the conventional fully connected layer to complete the final classification. In the implemented study, all convolutional layers of the proposed network, except the middle layer, use 1 × 1 small convolution, effectively reduced model parameters and increased the speed of feature extraction processes. DPSCN was compared with several current state-of-the-art models. The results on three benchmark HSI data sets demonstrated that the proposed model is of lower complexity, has stronger generalization ability, and has higher classification efficiency.

Funder

National Natural Science Foundation of China

Technology Development Plan Project of Henan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DAS seismic signal recovery with non-uniform noise based on high-low level feature fusion model;Journal of Applied Geophysics;2024-10

2. 3D-MACNet: A Multiscale Asymetric Convolution Network for Feature Extraction and Classification of Hyperspectral Images;2023 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS);2023-11-03

3. 3D-CAN: A 3D Convolution Attention Network for Feature Extraction and Classification of Hyperspectral Images;2023 International Conference on Network, Multimedia and Information Technology (NMITCON);2023-09-01

4. A Multiple Branch Fusion Network for Feature Learning and Hyperspectral Image Classification;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

5. A lightweight convolution network with self-knowledge distillation for hyperspectral image classification;Fourteenth International Conference on Graphics and Image Processing (ICGIP 2022);2023-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3