DGANet: A Dilated Graph Attention-Based Network for Local Feature Extraction on 3D Point Clouds

Author:

Wan JieORCID,Xie Zhong,Xu YongyangORCID,Zeng Ziyin,Yuan Ding,Qiu Qinjun

Abstract

Feature extraction on point clouds is an essential task when analyzing and processing point clouds of 3D scenes. However, there still remains a challenge to adequately exploit local fine-grained features on point cloud data due to its irregular and unordered structure in a 3D space. To alleviate this problem, a Dilated Graph Attention-based Network (DGANet) with a certain feature for learning ability is proposed. Specifically, we first build a local dilated graph-like region for each input point to establish the long-range spatial correlation towards its corresponding neighbors, which allows the proposed network to access a wider range of geometric information of local points with their long-range dependencies. Moreover, by integrating the dilated graph attention module (DGAM) implemented by a novel offset–attention mechanism, the proposed network promises to highlight the differing importance on each edge of the constructed local graph to uniquely learn the discrepancy feature of geometric attributes between the connected point pairs. Finally, all the learned edge attention features are further aggregated, allowing the most significant geometric feature representation of local regions by the graph–attention pooling to fully extract local detailed features for each point. The validation experiments using two challenging benchmark datasets demonstrate the effectiveness and powerful generation ability of our proposed DGANet in both 3D object classification and segmentation tasks.

Funder

National Natural Science Foundation of China

Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large-scale point cloud semantic segmentation via local perception and global descriptor vector;Expert Systems with Applications;2024-07

2. STPointNet for Human Action Recognition in MmWave Point Clouds;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

3. A cascaded graph convolutional network for point cloud completion;The Visual Computer;2024-04-09

4. A transformer-based real-time LiDAR semantic segmentation method for restricted mobile devices;Journal of the Franklin Institute;2024-03

5. ALS Point Cloud Semantic Segmentation Based on Graph Convolution and Transformer With Elevation Attention;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3