Influence of Indian Summer Monsoon on Tropopause, Trace Gases and Aerosols in Asian Summer Monsoon Anticyclone Observed by COSMIC, MLS and CALIPSO

Author:

Basha Ghouse,Ratnam Madineni VenkatORCID,Jiang Jonathan H.ORCID,Kishore PangaluruORCID,Ravindra Babu SaginelaORCID

Abstract

The existence of the Asian Summer Monsoon Anticyclone (ASMA) during the summer in the northern hemisphere, upper troposphere and lower stratosphere (UTLS) region plays a significant role in confining the trace gases and aerosols for a long duration, thus affecting regional and global climate. Though several studies have been carried out, our understanding of the trace gases and aerosols variability in the ASMA is limited during different phases of the Indian monsoon. This work quantifies the role of Indian Summer Monsoon (ISM) activity on the tropopause, trace gases (Water Vapor (WV), Ozone (O3), Carbon Monoxide (CO)) and aerosols (Attenuated Scattering Ratio (ASR)) obtained from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC), Microwave Limb Sounder (MLS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite observations, respectively, during the period 2006–2016. Enhancement in the tropopause altitude, WV, CO, ASR and low tropopause temperatures, O3 in the ASMA region is clearly noticed during peak monsoon months (July and August) with large inter-annual variability. Further, a significant increase in the WV and CO, and decrease in O3 during the active phase of the ISM, strong monsoon years and strong La Niña years in the ASMA is noticed. An enhancement in the ASR values during the strong monsoon years and strong La Niña years is also observed. In addition, our results showed that the presence of deep convection spreading from India land regions to the Bay of Bengal with strong updrafts can transport the trace gases and aerosols to the upper troposphere during active spells, strong monsoon years and La Niña years when compared to their counterparts. Observations show that the ASMA is very sensitive to active spells, strong monsoon years and La Niña years compared to break spells, weak monsoon years and El Niño years. It is concluded that the dynamics play a significant role in constraining several trace gases and aerosols in the ASMA and suggested considering the activity of the summer monsoon while dealing with them at sub-seasonal scales.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3