A Study of Sea Surface Rain Identification Based on HY-2A Scatterometer

Author:

Peng Yihuan,Xie Xuetong,Lin MingsenORCID,Ran LishanORCID,Yuan Feng,Zhou Yuan,Tang Ling

Abstract

Rain affects the wind measurement accuracy of the Ku-band spaceborne scatterometer. In order to improve the quality of the retrieved wind field, it is necessary to identify and flag rain-contaminated data. In this study, an HY-2A scatterometer is used to study rain identification. In addition to the conventional parameters, such as the retrieved wind speed, the wind direction relative to the along-track direction, and the normalized beam difference, the experiment expands the mean deviation of the backscattering coefficient, the beam difference between fore and aft, and the node number of the wind vector cell (WVC) as the sensitive parameters according to the microwave scattering characteristics of rain and the actual measurement situation of the HY-2A. Furthermore, a rain identification model for HY2 (HY2RRM) with the K-Nearest Neighborhood (KNN) algorithm was built. After several tests, the accuracy of the selected HY2RRM approach is found to about 88%, and about 70% of rain-contaminated data can be accurately identified. The research results are helpful for better understanding the characteristics of microwave backscattering and provide a possible way to further improve the wind field retrieval accuracy of the HY-2A scatterometer and other Ku-band scatterometers.

Funder

National Natural Science Foundation of China

Special Fund Project for Marine Economic Development of Guangdong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference34 articles.

1. An analysis of SeaWinds-based rain retrieval in severe weather events

2. Rain Identification in ASCAT Winds Using Singularity Analysis

3. Rain effect on C-band scatterometer wind measurement and its correction;Zhou;Acta Phys. Sin.,2012

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3