Water Extraction in SAR Images Using Features Analysis and Dual-Threshold Graph Cut Model

Author:

Bao Linan,Lv Xiaolei,Yao Jingchuan

Abstract

Timely identifying and detecting water bodies from SAR images are significant for flood monitoring and water resources management. In recent decades, deep learning has been applied to water extraction but is subject to the large difficulty of acquiring SAR dataset of various water bodies types, as well as heavy labeling work. In addition, the traditional methods mostly occur over the large, open lakes and rivers, rarely focusing on complex areas such as the urban water, and cannot automatically acquire the classification threshold. To address these issues, a novel water extraction method is proposed with high accuracy in this paper. Firstly, a multiscale feature extraction using a Gabor filter is conducted to reduce the noise and roughly identify water feature. Secondly, we apply the Otsu algorithm as well as a voting strategy to initially extract the homogeneous regions and for subsequent Gaussian mixture model (GMM). Finally, the dual threshold is obtained from the fitted Gaussian distribution of water and non-water, which is integrated into the graph cut model to redefine the weights of the edges, then constructing the energy function of the water map. The dual-threshold graph cut (DTGC) model precisely pinpoints the water location by minimizing the energy function. To verify the efficiency and robustness, our method and comparison methods, including the IGC method and IACM method, are tested on six different types of water bodies, by performing the accuracy assessment via comparing outcomes with the manually labeled ground truth. The qualitative and quantitative results show that the overall accuracy of our method for the whole dataset all surpasses 99%, along with an obvious improvement of the Kappa, F1-score, and IoU indicators. Therefore, DTGC method has the absolute advantage of automatically capturing water maps in different scenes of SAR images without specific prior knowledge and can also determine the optimal threshold range.

Funder

National Key Research and Development Program of China

China Academy of Railway Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3