Integrated Analysis of the Combined Risk of Ground Subsidence, Sea Level Rise, and Natural Hazards in Coastal and Delta River Regions

Author:

Zhao Qing,Pan JiayiORCID,Devlin Adam,Xu QingORCID,Tang Maochuan,Li Zhengjie,Zamparelli VirginiaORCID,Falabella FrancescoORCID,Mastro PietroORCID,Pepe AntonioORCID

Abstract

Non-climate-related anthropogenic processes and frequently encountered natural hazards exacerbate the risk in coastal zones and megacities and amplify local vulnerability. Coastal risk is amplified by the combination of sea level rise (SLR) resulting from climate change, associated tidal evolution, and the local sinking of land resulting from anthropogenic and natural hazards. In this framework, the authors of this investigation have actively contributed to the joint European Space Agency (ESA) and the Chinese Ministry of Science and Technology (MOST) Dragon IV initiative through a project (ID. 32294) that was explicitly designed to address the issue of monitoring coastal and delta river regions through Earth Observation (EO) technologies. The project’s primary goals were to provide a complete characterization of the changes in target scenes over time and provide estimates of future regional sea level changes to derive submerged coastal areas and wave fields. Suggestions are also provided for implementing coastal protection measures in order to adapt and mitigate the multifactor coastal vulnerability. In order to achieve these tasks, well-established remote sensing technologies based on the joint exploitation of multi-spectral information gathered at different spectral wavelengths, the exploitation of advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques for the retrieval of ground deformations, the realization of geophysical analyses, and the use of satellite altimeters and tide gauge data have effectively been employed. The achieved results, which mainly focus on selected sensitive regions including the city of Shanghai, the Pearl River Delta in China, and the coastal city of Saint Petersburg in Europe, provide essential assets for planning present and future scientific activities devoted to monitoring such fragile environments. These analyses are crucial for assessing the factors that will amplify the vulnerability of low-elevation coastal zones.

Funder

National Natural Science Foundation of China

Research Grants of Science and Technology Commission of Shanghai Municipality through Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3