Spatiotemporal Monitoring of Soil CO2 Efflux in a Subtropical Forest during the Dry Season Based on Field Observations and Remote Sensing Imagery

Author:

Chen Tao,Xu ZhenwuORCID,Tang Guoping,Chen Xiaohua,Fang HongORCID,Guo HaoORCID,Yuan Ye,Zheng GuoxiongORCID,Jiang Liangliang,Niu Xiangyu

Abstract

The CO2 efflux from forest soil (FCO2) is one of the largest components of the global carbon cycle. Accurate estimation of FCO2 can help us better understand the carbon cycle in forested areas and precisely predict future climate change. However, the scarcity of field-measured FCO2 data in the subtropical forested area greatly limits our understanding of FCO2 dynamics at regional and global scales. This study used an automatic cavity ring-down spectrophotometer (CRDS) analyzer to measure FCO2 in a typical subtropical forest of southern China in the dry season. We found that the measured FCO2 at two experimental areas experienced similar temporal trends in the dry season and reached the minima around December, whereas the mean FCO2 differed apparently across the two areas (9.05 vs. 5.03 g C m−2 day−1) during the dry season. Moreover, we found that both abiotic (soil temperature and moisture) and biotic (vegetation productivity) factors are significantly and positively correlated, respectively, with the FCO2 variation during the study period. Furthermore, a machine-learning random forest model (RF model) that incorporates remote sensing data is developed and used to predict the FCO2 pattern in the subtropical forest, and the topographic effects on spatiotemporal patterns of FCO2 were further investigated. The model evaluation indicated that the proposed model illustrated high prediction accuracy for the training and testing dataset. Based on the proposed model, the spatiotemporal patterns of FCO2 in the forested watershed that encloses the two monitoring sites were mapped. Results showed that the spatial distribution of FCO2 is obviously affected by topography: the high FCO2 values mainly occur in relatively high altitudinal areas, in slopes of 10–25°, and in sunny slopes. The results emphasized that future studies should consider topographical effects when simulating FCO2 in subtropical forests. Overall, our study unraveled the spatiotemporal variations of FCO2 and their driving factors in a subtropical forest of southern China in the dry season, and demonstrated that the proposed RF model in combination with remote sensing data can be a useful tool for predicting FCO2 in forested areas, particularly in subtropical and tropical forest ecosystems.

Funder

National Natural Science Foundation of China

Guangzhou Municipal Scientific Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3