Biometric Template Protection for Dynamic Touch Gestures Based on Fuzzy Commitment Scheme and Deep Learning

Author:

Bajaber AsrarORCID,Elrefaei LamiaaORCID

Abstract

Privacy plays an important role in biometric authentication systems. Touch authentication systems have been widely used since touch devices reached their current level of development. In this work, a fuzzy commitment scheme (FCS) is proposed based on deep learning (DL) to protect the touch-gesture template in a touch authentication system. The binary Bose–Ray-Chaudhuri code (BCH) is used with FCS to deal with touch variations. The BCH code is described by the triplet (n, k, t) where n denotes the code word’s length, k denotes the length of the key and t denotes error-correction capability. In our proposed system, the system performance is investigated using different lengths k. The learning-based approach is applied to extract touch features from raw touch data, as the recurrent neural network (RNN) is used based on a convolutional neural network (CNN). The proposed system has been evaluated on two different touch datasets: the Touchalytics dataset and BioIdent dataset. The best results obtained were with a key length k = 99 and n = 255; the false accept rate (FAR) was 0.00 and false reject rate (FRR) was 0.5854 for the Touchalytics dataset, while the FAR was 0.00 and FRR was 0.5399 with the BioIdent dataset. The FCS shows its effectiveness in dynamic authentication systems, as good results are obtained and compared with other works.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Survey for Privacy-Preserving Biometrics: Recent Approaches, Challenges, and Future Directions;Computers, Materials & Continua;2024

2. Privacy-Preserving Biometric Authentication: Cryptanalysis and Countermeasures;IEEE Transactions on Dependable and Secure Computing;2023-11

3. A Secure Biometric Key Generation Based on Coordinate Attention Mechanism And Reliable Feature Selection;2023-07-11

4. Analysis on Encrypted Biometric Template Protection Schemes;2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2022-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3