Mathematical Modeling of the Operation of an Expander-Generator Pressure Regulator in Non-Stationary Conditions of Small Gas Pressure Reduction Stations

Author:

Belousov Artem EvgenevichORCID,Ovchinnikov Egor SergeevichORCID

Abstract

Long-distance gas transfer requires high pressure, which has to be reduced before the gas is conveyed to the customers. This pressure reduction takes place at natural gas pressure reduction stations, where gas pressure is decreased by using gas flow energy for overcoming local resistance, represented by a throttling valve. This pressure energy can be reused, but it is difficult to implement it at small pressure reduction stations, as the values of unsteadiness significantly increase when the gas approaches consumers, whereas gas flow rate and pressure decrease. This work suggests replacing throttling valves at small pressure reduction stations for expander-generator units, based on volumetric expanders. Two implementations are proposed. A mathematical model of gas-dynamic processes, which take place in expander-generator units, was developed using math equations. With its help, a comparison was made of the stability of the operation of two possible control schemes in non-stationary conditions, and the feasibility of using an expander-generator regulator as a primary one for a small natural gas pressure reduction station was confirmed.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3