Abstract
In this paper, a fuzzy (F) proportional (P)–integral (I)–derivative (D) (PID) (FPID) controller optimized with a water cycle algorithm is proposed for load frequency control of a multi-area multi-fuel (MAMF) power system. The MAMF system has the realistic feature of communication time delays (CTDs), in order to conduct an analysis nearer to realistic practice. Initially, the MAMF system is analyzed when subjected to a step load disturbance (SLD) of 10% on area 1. The superiority of the fuzzy PID controller is revealed upon comparing it with PID plus double derivative (DD) (PIDD) and PID controllers. The MAMF system is investigated with and without CTDs, to demonstrate their impact on system performance. Later, an additional HVDC line is incorporated in parallel with the existing AC line for further enhancement of the system performance. Finally, the MAMF system is targeted with random loading to validate the robustness of the presented control scheme.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献