Multi-Objective Feeder Reconfiguration Using Discrete Particle Swarm Optimization

Author:

Noudjiep Djiepkop Giresse Franck,Krishnamurthy Senthil

Abstract

Electric power distribution systems have been heavily engaged in evolutionary changes toward effective usage of distribution networks for dependability, quality, and improvement of services delivered to customers throughout the years. This was accomplished via a procedure known as reconfiguration. Several strategies have been offered by various authors for successful distribution feeder reconfiguration with a novel optimization method. As a result, this work developed a Discrete Particle Swarm Optimization (DPSO) method to address the issue of distribution system feeder reconfiguration during both steady-state and dynamic power system operations. In a dynamic state, the power demand and generation required are continually changing over time, and the DPSO algorithm finds a new set of solutions to fulfill the power demand. Many network topologies are investigated for the dynamic operation. The feeder reconfiguration single-objective optimization problem was transformed into a multi-objective optimization problem by taking into account both real power loss reduction and distribution system load balancing. The suggested technique was verified using various IEEE 16, 33, and 69 bus standard test distribution systems to determine the efficiency of the developed DPSO algorithm. The simulation findings reveal that DPSO outperforms other optimization algorithms in terms of actual power loss reduction and load balancing, while solving multi-objective distribution system feeder reconfiguration.

Funder

ESKOM TESP and EPPEI

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3