Improving Facial Emotion Recognition Using Residual Autoencoder Coupled Affinity Based Overlapping Reduction

Author:

Chatterjee SankhadeepORCID,Das Asit KumarORCID,Nayak Janmenjoy,Pelusi Danilo

Abstract

Emotion recognition using facial images has been a challenging task in computer vision. Recent advancements in deep learning has helped in achieving better results. Studies have pointed out that multiple facial expressions may present in facial images of a particular type of emotion. Thus, facial images of a category of emotion may have similarity to other categories of facial images, leading towards overlapping of classes in feature space. The problem of class overlapping has been studied primarily in the context of imbalanced classes. Few studies have considered imbalanced facial emotion recognition. However, to the authors’ best knowledge, no study has been found on the effects of overlapped classes on emotion recognition. Motivated by this, in the current study, an affinity-based overlap reduction technique (AFORET) has been proposed to deal with the overlapped class problem in facial emotion recognition. Firstly, a residual variational autoencoder (RVA) model has been used to transform the facial images to a latent vector form. Next, the proposed AFORET method has been applied on these overlapped latent vectors to reduce the overlapping between classes. The proposed method has been validated by training and testing various well known classifiers and comparing their performance in terms of a well known set of performance indicators. In addition, the proposed AFORET method is compared with already existing overlap reduction techniques, such as the OSM, ν-SVM, and NBU methods. Experimental results have shown that the proposed AFORET algorithm, when used with the RVA model, boosts classifier performance to a greater extent in predicting human emotion using facial images.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Systematic Review of Emotion Detection with Computer Vision and Deep Learning;Sensors;2024-05-28

2. Facial Expression Recognition Using Machine Learning and Deep Learning Techniques: A Systematic Review;SN Computer Science;2024-04-13

3. Algorithms used for facial emotion recognition: a systematic review of the literature;EAI Endorsed Transactions on Pervasive Health and Technology;2023-10-24

4. Majority biased facial emotion recognition using residual variational autoencoders;Multimedia Tools and Applications;2023-07-07

5. Emotion Recognition using Autoencoders: A Systematic Review;2023 International Conference on Intelligent Systems for Communication, IoT and Security (ICISCoIS);2023-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3