Abstract
We study algorithms for solving three problems on strings. These are sorting of n strings of length k, “the Most Frequent String Search Problem”, and “searching intersection of two sequences of strings”. We construct quantum algorithms that are faster than classical (randomized or deterministic) counterparts for each of these problems. The quantum algorithms are based on the quantum procedure for comparing two strings of length k in O(k) queries. The first problem is sorting n strings of length k. We show that classical complexity of the problem is Θ(nk) for constant size alphabet, but our quantum algorithm has O˜(nk) complexity. The second one is searching the most frequent string among n strings of length k. We show that the classical complexity of the problem is Θ(nk), but our quantum algorithm has O˜(nk) complexity. The third problem is searching for an intersection of two sequences of strings. All strings have the same length k. The size of the first set is n, and the size of the second set is m. We show that the classical complexity of the problem is Θ((n+m)k), but our quantum algorithm has O˜((n+m)k) complexity.
Funder
Kazan Federal University Strategic Academic Leadership Program
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference53 articles.
1. Quantum Computation and Quantum Information;Nielsen,2010
2. On quantum methods for machine learning problems part I: Quantum tools
3. Quantum Computing and Communication Complexity;de Wolf,2001
4. Quantum Algorithms Zoohttp://quantumalgorithmzoo.org/
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献