A Methodology for Estimating Vehicle Route Choice from Sparse Flow Measurements in a Traffic Network

Author:

Kurzhanskiy Alex A.ORCID

Abstract

While traffic speed data and travel time estimates are increasingly more available from commercial vendors, they are not sufficient for proper management and performance evaluation of transportation networks. Effective traffic control and demand management requires information about volumes, which is provided by fixed location sensors, such as loop detectors or cameras, and those are sparse. This paper proposes a method for estimating route choice using sparse flow measurements and estimated speed on the road network based on compressed sensing technology widely used in image processing, where from a handful of scattered pixels, a full image is recovered. What is known includes flows at origins and at selected links of the road network, where the detection is present; speed estimates are available for all network links. We find coefficients that split origin flows among routes starting at those origins. The advantage of the proposed methodology is that it does not rely on simulation that is prone to calibration errors but only on measured data. We also show how vehicle flows can be estimated at links with no detection, which enables computing performance measures for road networks lacking complete sensor coverage. Finally, we propose a method for selecting plausible routes between origins and destinations.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3