Mathematical Modeling of Toxoplasmosis Considering a Time Delay in the Infectivity of Oocysts

Author:

González-Parra GilbertoORCID,Sultana SharminORCID,Arenas Abraham J.ORCID

Abstract

In this paper, we study the effect of the introduction of a time delay on the dynamics of toxoplasmosis. This time delay is the elapsed time from when oocysts become present in the environment and when they become infectious. We construct a mathematical model that includes cats and oocysts in the environment. We include the effect of oocysts, since they are crucial for the dynamics of toxoplasmosis. The likelihood of the acquisition of Toxoplasma gondii infection depends on the environmental load of the parasite. Furthermore, the model considers the possibility of vaccination of the feline host. In the mathematical model, we consider directly the infection of cats through the oocysts shed by other cats. We prove that the basic reproduction number R0 is a secondary parameter that determines the global dynamics of toxoplasmosis in cat populations. We study the effect of the time delay on the stability of the steady states. We find that the time delay cannot change the stability of the endemic state, which is an important result from the biological point of view. Numerical simulations are performed to support the theoretical results and obtain further insight into understanding toxoplasmosis dynamics in cat populations.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3