Modeling and Numerical Simulation of the Thermal Interaction between Vegetation Cover and Soil

Author:

Hidalgo ArturoORCID,Tello LourdesORCID

Abstract

In this work, we propose a mathematical model representing the thermal interaction between vegetation cover and the soil underneath it. This model consists of a one-dimensional reaction–diffusion equation describing the evolution of the temperature in the vegetation cover coupled with a two-dimensional reaction–diffusion equation to represent the evolution of the temperature in the soil. The thermal interaction between the vegetation cover and the soil is studied and the distribution of temperatures in the soil with depth is also obtained. The vegetation cover acts in this model as a dynamic and diffusive boundary condition for the soil. The developed model takes into account the latent heat of fusion, which appears when the transformation of ice into liquid water or vice versa occurs inside the soil. The numerical approach for the solution of the mathematical model conducted in this work is based on the finite volume method with Weighted Essentially Non-Oscillatory technique for spatial reconstruction and the third-order Runge–Kutta Total Variation Diminishing numerical scheme is used for time integration, which is very efficient to obtain the numerical solution of this type of model. Some numerical examples are solved to obtain the distribution of temperature both in the vegetation cover and the soil.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3