Optimal Management of Energy Consumption in an Autonomous Power System Considering Alternative Energy Sources

Author:

Manusov Vadim,Beryozkina SvetlanaORCID,Nazarov Muso,Safaraliev MurodbekORCID,Zicmane Inga,Matrenin PavelORCID,Ghulomzoda AnvariORCID

Abstract

This work aims to analyze and manage the optimal power consumption of the autonomous power system within the Pamir region of Republic of Tajikistan, based on renewable energy sources. The task is solved through linear programming methods, production rules and mathematical modeling of power consumption modes by generating consumers. It is assumed that power consumers in the considered region have an opportunity to independently cover energy shortage by installing additional generating energy sources. The objective function is to minimize the financial expenses for own power consumption, and to maximize them from both the export and redistribution of power flows. In this study, the optimal ratio of power generation by alternative sources from daily power consumption for winter was established to be hydroelectric power plants (94.8%), wind power plant (3.8%), solar photovoltaic power plant (0.5%) and energy storage (0.8%); while it is not required in summer due to the ability to ensure the balance of energy by hydroelectric power plants. As a result, each generating consumer can independently minimize their power consumption and maximize profit from the energy exchange with other consumers, depending on the selected energy sources, thus becoming a good example of carbon-free energy usage at the micro- and mini-grid level.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference37 articles.

1. Off-Grid Multi-Carrier Microgrid Design Optimisation: The Case of Rakiura–Stewart Island, Aotearoa–New Zealand

2. Climate Action https://ec.europa.eu/clima/eu-action/international-action-climate-change/climate-negotiations/paris-agreement_en

3. Edition: 7 Chapter: Renewable Energy Technologies;Min,2018

4. Sustainable Developments https://www.un.org/sustainabledevelopment/energy/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3