Abstract
In this article, a novel finite-time attitude-tracking control scheme is proposed by using the prescribed performance control (PPC) method for the spacecraft system under the external disturbance and an uncertain inertia matrix. First, a novel polynomial finite-time performance function (FTPF) was used to avoid the complex calculation of exponential function from conventional FTPF. Then, a simpler error transformation was introduced to guarantee that the attitude-tracking error converges to a preselected region in prescribed time. Subsequently, a robust adaptive controller was proposed by using the backstepping method and the sliding mode control (SMC) technique. Unlike the existing attitude-tracking control results, the proposed PPC scheme guarantees the performance of spacecraft system under the static and transient conditions. Meanwhile, the state trajectory of system can be completely drawn into the designed sliding surface. The stability of the control scheme is proven rigorously by the Lyapunov’s theory of stability. Finally, the simulations show that the convergence rate and the convergence accuracy are better for the tracking errors of spacecraft system under the proposed control scheme.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献