Abstract
Inertial Measurement Units (IMUs) within an everyday consumer smartwatch offer a convenient and low-cost method to monitor the natural behaviour of hospital patients. However, their accuracy at quantifying limb motion, and clinical acceptability, have not yet been demonstrated. To this end we conducted a two-stage study: First, we compared the inertial accuracy of wrist-worn IMUs, both research-grade (Xsens MTw Awinda, and Axivity AX3) and consumer-grade (Apple Watch Series 3 and 5), and optical motion tracking (OptiTrack). Given the moderate to strong performance of the consumer-grade sensors, we then evaluated this sensor and surveyed the experiences and attitudes of hospital patients (N = 44) and staff (N = 15) following a clinical test in which patients wore smartwatches for 1.5–24 h in the second study. Results indicate that for acceleration, Xsens is more accurate than the Apple Series 5 and 3 smartwatches and Axivity AX3 (RMSE 1.66 ± 0.12 m·s−2; R2 0.78 ± 0.02; RMSE 2.29 ± 0.09 m·s−2; R2 0.56 ± 0.01; RMSE 2.14 ± 0.09 m·s−2; R2 0.49 ± 0.02; RMSE 4.12 ± 0.18 m·s−2; R2 0.34 ± 0.01 respectively). For angular velocity, Series 5 and 3 smartwatches achieved similar performances against Xsens with RMSE 0.22 ± 0.02 rad·s−1; R2 0.99 ± 0.00; and RMSE 0.18 ± 0.01 rad·s−1; R2 1.00± SE 0.00, respectively. Surveys indicated that in-patients and healthcare professionals strongly agreed that wearable motion sensors are easy to use, comfortable, unobtrusive, suitable for long-term use, and do not cause anxiety or limit daily activities. Our results suggest that consumer smartwatches achieved moderate to strong levels of accuracy compared to laboratory gold-standard and are acceptable for pervasive monitoring of motion/behaviour within hospital settings.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献