Accuracy and Acceptability of Wearable Motion Tracking for Inpatient Monitoring Using Smartwatches

Author:

Auepanwiriyakul ChaiyawanORCID,Waibel SigourneyORCID,Songa Joanna,Bentley PaulORCID,Faisal A. AldoORCID

Abstract

Inertial Measurement Units (IMUs) within an everyday consumer smartwatch offer a convenient and low-cost method to monitor the natural behaviour of hospital patients. However, their accuracy at quantifying limb motion, and clinical acceptability, have not yet been demonstrated. To this end we conducted a two-stage study: First, we compared the inertial accuracy of wrist-worn IMUs, both research-grade (Xsens MTw Awinda, and Axivity AX3) and consumer-grade (Apple Watch Series 3 and 5), and optical motion tracking (OptiTrack). Given the moderate to strong performance of the consumer-grade sensors, we then evaluated this sensor and surveyed the experiences and attitudes of hospital patients (N = 44) and staff (N = 15) following a clinical test in which patients wore smartwatches for 1.5–24 h in the second study. Results indicate that for acceleration, Xsens is more accurate than the Apple Series 5 and 3 smartwatches and Axivity AX3 (RMSE 1.66 ± 0.12 m·s−2; R2 0.78 ± 0.02; RMSE 2.29 ± 0.09 m·s−2; R2 0.56 ± 0.01; RMSE 2.14 ± 0.09 m·s−2; R2 0.49 ± 0.02; RMSE 4.12 ± 0.18 m·s−2; R2 0.34 ± 0.01 respectively). For angular velocity, Series 5 and 3 smartwatches achieved similar performances against Xsens with RMSE 0.22 ± 0.02 rad·s−1; R2 0.99 ± 0.00; and RMSE 0.18 ± 0.01 rad·s−1; R2 1.00± SE 0.00, respectively. Surveys indicated that in-patients and healthcare professionals strongly agreed that wearable motion sensors are easy to use, comfortable, unobtrusive, suitable for long-term use, and do not cause anxiety or limit daily activities. Our results suggest that consumer smartwatches achieved moderate to strong levels of accuracy compared to laboratory gold-standard and are acceptable for pervasive monitoring of motion/behaviour within hospital settings.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3