Treating Hyperexcitability in Human Cerebral Organoids Resulting from Oxygen-Glucose Deprivation

Author:

Santos Alexandra C.12ORCID,Nader George1,El Soufi El Sabbagh Dana13,Urban Karolina4,Attisano Liliana56,Carlen Peter L.12ORCID

Affiliation:

1. Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada

2. Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada

3. Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada

4. Avicanna Inc., Toronto, ON M5G 1V2, Canada

5. Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada

6. Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada

Abstract

Human cerebral organoids resemble the 3D complexity of the human brain and have the potential to augment current drug development pipelines for neurological disease. Epilepsy is a complex neurological condition characterized by recurrent seizures. A third of people with epilepsy do not respond to currently available pharmaceutical drugs, and there is not one drug that treats all subtypes; thus, better models of epilepsy are needed for drug development. Cerebral organoids may be used to address this unmet need. In the present work, human cerebral organoids are used along with electrophysiological methods to explore oxygen-glucose deprivation as a hyperexcitability agent. This activity is investigated in its response to current antiseizure drugs. Furthermore, the mechanism of action of the drug candidates is probed with qPCR and immunofluorescence. The findings demonstrate OGD-induced hyperexcitable changes in the cerebral organoid tissue, which is treated with cannabidiol and bumetanide. There is evidence for NKCC1 and KCC2 gene expression, as well as other genes and proteins involved in the complex development of GABAergic signaling. This study supports the use of organoids as a platform for modelling cerebral cortical hyperexcitability that could be extended to modelling epilepsy and used for drug discovery.

Funder

Epilepsy Canada

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3