Crosstalk between the Rod Outer Segments and Retinal Pigmented Epithelium in the Generation of Oxidative Stress in an In Vitro Model

Author:

Ravera Silvia1ORCID,Bertola Nadia2ORCID,Puddu Alessandra3ORCID,Bruno Silvia1,Maggi Davide3ORCID,Panfoli Isabella4ORCID

Affiliation:

1. Department of Experimental Medicine, Università di Genoa, Via De Toni 14, 16132 Genova, Italy

2. Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy

3. Department of Internal Medicine and Medical Specialties, University of Genova, Viale Benedetto XV 6, 16132 Genova, Italy

4. Department of Pharmacy-(DIFAR), Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy

Abstract

Dysfunction of the retinal pigment epithelium (RPE) is associated with several diseases characterized by retinal degeneration, such as diabetic retinopathy (DR). However, it has recently been proposed that outer retinal neurons also participate in the damage triggering. Therefore, we have evaluated the possible crosstalk between RPE and photoreceptors in priming and maintaining oxidative damage of the RPE. For this purpose, we used ARPE-19 cells as a model of human RPE, grown in normal (NG, 5.6 mM) or high glucose (HG, 25 mM) and unoxidized (UOx) or oxidized (Ox) mammalian retinal rod outer segments (OSs). ARPE-19 cells were efficient at phagocytizing rod OSs in both NG and HG settings. However, in HG, ARPE-19 cells treated with Ox-rod OSs accumulated MDA and lipofuscins and displayed altered LC3, GRP78, and caspase 8 expression compared to untreated and UOx-rod-OS-treated cells. Data suggest that early oxidative damage may originate from the photoreceptors and subsequently extend to the RPE, providing a new perspective to the idea that retinal degeneration depends solely on a redox alteration of the RPE.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3