The Highs and Lows of Memantine—An Autophagy and Mitophagy Inducing Agent That Protects Mitochondria

Author:

de Wet Sholto1,Mangali Asandile1,Batt Richard2,Kriel Jurgen3,Vahrmeijer Nicola1ORCID,Niehaus Dana4ORCID,Theart Rensu2,Loos Ben1ORCID

Affiliation:

1. Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa

2. Department of Electric and Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa

3. Microscopy Unit, Central Analytical Facility, Stellenbosch University, Stellenbosch 7600, South Africa

4. Department of Psychiatry and Stikland Hospital, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7530, South Africa

Abstract

Memantine is an FDA-approved, non-competitive NMDA-receptor antagonist that has been shown to have mitochondrial protective effects, improve cell viability and enhance clearance of Aβ42 peptide. Currently, there are uncertainties regarding the precise molecular targets as well as the most favourable treatment concentrations of memantine. Here, we made use of an imaging-based approach to investigate the concentration-dependent effects of memantine on mitochondrial fission and fusion dynamics, autophagy and mitochondrial quality control using a neuronal model of CCCP-induced mitochondrial injury so as to better unpack how memantine aids in promoting neuronal health. GT1-7 murine hypothalamic cells were cultured under standard conditions, treated with a relatively high and low concentration (100 µM and 50 µM) of memantine for 48 h. Images were acquired using a Zeiss 780 PS1 platform. Utilising the mitochondrial event localiser (MEL), we demonstrated clear concentration-dependent effects of memantine causing a protective response to mitochondrial injury. Both concentrations maintained the mitochondrial network volume whilst the low concentration caused an increase in mitochondrial number as well as increased fission and fusion events following CCCP-induced injury. Additionally, we made use of a customised Python-based image processing and analysis pipeline to quantitatively assess memantine-dependent changes in the autophagosomal and lysosomal compartments. Our results revealed that memantine elicits a differential, concentration-dependent effect on autophagy pathway intermediates. Intriguingly, low but not high concentrations of memantine lead to the induction of mitophagy. Taken together, our findings have shown that memantine is able to protect the mitochondrial network by preserving its volume upon mitochondrial injury with high concentrations of memantine inducing macroautophagy, whereas low concentrations lead to the induction of mitophagy.

Funder

South African Medical Research Council

National Research Foundation (NRF) of South Africa

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3