Exploiting an Interleukin-15 Heterodimeric Agonist (N803) for Effective Immunotherapy of Solid Malignancies

Author:

Lui Grace1,Minnar Christine M.1ORCID,Soon-Shiong Patrick2,Schlom Jeffrey1ORCID,Gameiro Sofia R.1ORCID

Affiliation:

1. Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

2. ImmunityBio, Culver City, CA 90232, USA

Abstract

Identifying effective immunotherapies for solid tumors remains challenging despite the significant clinical responses observed in subsets of patients treated with immune checkpoint inhibitors. Interleukin-15 (IL-15) is a promising cytokine for the treatment of cancer as it stimulates NK and CD8+ lymphocytes. However, unfavorable pharmacokinetics and safety concerns render recombinant IL-15 (rIL-15) a less attractive modality. These shortcomings were addressed by the clinical development of heterodimeric IL-15 agonists, including N803. In preclinical tumor models, N803 elicited significant Th1 immune activation and tumor suppressive effects, primarily mediated by NK and CD8+ T lymphocytes. In addition, multiple clinical studies have demonstrated N803 to be safe for the treatment of cancer patients. The combination of N803 with the immune checkpoint inhibitor nivolumab demonstrated encouraging clinical responses in nivolumab-naïve and nivolumab-refractory patients with non-small cell lung cancer. In a recent Phase II/III clinical study, most Bacillus Calmette–Guerin (BCG)-refractory bladder cancer patients treated with N803 plus BCG experienced durable complete responses. Currently, N803 is being evaluated preclinically and clinically in combination with various agents, including chemotherapeutics, immune checkpoint inhibitors, vaccines, and other immuno-oncology agents. This report will review the mechanism(s) of action of N803 and how it relates to the preclinical and clinical studies of N803.

Funder

Intramural Research Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3