Transcriptomic Analysis in the Hippocampus and Retina of Tg2576 AD Mice Reveals Defective Mitochondrial Oxidative Phosphorylation and Recovery by Tau 12A12mAb Treatment

Author:

Morello Giovanna1,Guarnaccia Maria1,La Cognata Valentina1,Latina Valentina2ORCID,Calissano Pietro2,Amadoro Giuseppina23ORCID,Cavallaro Sebastiano1ORCID

Affiliation:

1. Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), Via Paolo Gaifami, 18, 95126 Catania, Italy

2. European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy

3. Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy

Abstract

Increasing evidence implicates decreased energy metabolism and mitochondrial dysfunctions among the earliest pathogenic events of Alzheimer’s disease (AD). However, the molecular mechanisms underlying bioenergetic dysfunctions in AD remain, to date, largely unknown. In this work, we analyzed transcriptomic changes occurring in the hippocampus and retina of a Tg2576 AD mouse model and wild-type controls, evaluating their functional implications by gene set enrichment analysis. The results revealed that oxidative phosphorylation and mitochondrial-related pathways are significantly down-regulated in both tissues of Tg2576 mice, supporting the role of these processes in the pathogenesis of AD. In addition, we also analyzed transcriptomic changes occurring in Tg2576 mice treated with the 12A12 monoclonal antibody that neutralizes an AD-relevant tau-derived neurotoxic peptide in vivo. Our analysis showed that the mitochondrial alterations observed in AD mice were significantly reverted by treatment with 12A12mAb, supporting bioenergetic pathways as key mediators of its in vivo neuroprotective and anti-amyloidogenic effects. This study provides, for the first time, a comprehensive characterization of molecular events underlying the disrupted mitochondrial bioenergetics in AD pathology, laying the foundation for the future development of diagnostic and therapeutic tools.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3