IPSC-Derived Sensory Neurons Directing Fate Commitment of Human BMSC-Derived Schwann Cells: Applications in Traumatic Neural Injuries

Author:

Tam Kin-Wai1ORCID,Wong Cheuk-Yin1,Wu Kenneth Lap-Kei1ORCID,Lam Guy1,Liang Xiaotong1,Wong Wai-Ting1,Li Maximilian Tak-Sui1,Liu Wing-Yui1,Cai Sa1,Shea Graham Ka-Hon2,Shum Daisy Kwok-Yan13,Chan Ying-Shing13ORCID

Affiliation:

1. School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China

2. Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China

3. State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China

Abstract

The in vitro derivation of Schwann cells from human bone marrow stromal cells (hBMSCs) opens avenues for autologous transplantation to achieve remyelination therapy for post-traumatic neural regeneration. Towards this end, we exploited human induced pluripotent stem-cell-derived sensory neurons to direct Schwann-cell-like cells derived from among the hBMSC-neurosphere cells into lineage-committed Schwann cells (hBMSC-dSCs). These cells were seeded into synthetic conduits for bridging critical gaps in a rat model of sciatic nerve injury. With improvement in gait by 12-week post-bridging, evoked signals were also detectable across the bridged nerve. Confocal microscopy revealed axially aligned axons in association with MBP-positive myelin layers across the bridge in contrast to null in non-seeded controls. Myelinating hBMSC-dSCs within the conduit were positive for both MBP and human nucleus marker HuN. We then implanted hBMSC-dSCs into the contused thoracic cord of rats. By 12-week post-implantation, significant improvement in hindlimb motor function was detectable if chondroitinase ABC was co-delivered to the injured site; such cord segments showed axons myelinated by hBMSC-dSCs. Results support translation into a protocol by which lineage-committed hBMSC-dSCs become available for motor function recovery after traumatic injury to both peripheral and central nervous systems.

Funder

Investigator-initiated Projects

Chi Lin Kok Ng BHL Foundation

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3