Sedentary Behavior Impacts on the Epigenome and Transcriptome: Lessons from Muscle Inactivation in Drosophila Larvae

Author:

Brener Avivit1ORCID,Lorber Dana2ORCID,Reuveny Adriana2,Toledano Hila3,Porat-Kuperstein Lilach3,Lebenthal Yael1,Weizman Eviatar4,Olender Tsviya2,Volk Talila2

Affiliation:

1. Pediatric Endocrinology and Diabetes Institute, Dana-Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Affiliated with the Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel

2. Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel

3. Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel

4. G-INCPM, Weizmann Institute of Science, Rehovot 7610001, Israel

Abstract

The biological mechanisms linking sedentary lifestyles and metabolic derangements are incompletely understood. In this study, temporal muscle inactivation in Drosophila larvae carrying a temperature-sensitive mutation in the shibire (shi1) gene was induced to mimic sedentary behavior during early life and study its transcriptional outcome. Our findings indicated a significant change in the epigenetic profile, as well as the genomic profile, of RNA Pol II binding in the inactive muscles relative to control, within a relatively short time period. Whole-genome analysis of RNA-Pol II binding to DNA by muscle-specific targeted DamID (TaDa) protocol revealed that muscle inactivity altered Pol II binding in 121 out of 2010 genes (6%), with a three-fold enrichment of genes coding for lncRNAs. The suppressed protein-coding genes included genes associated with longevity, DNA repair, muscle function, and ubiquitin-dependent proteostasis. Moreover, inducing muscle inactivation exerted a multi-level impact upon chromatin modifications, triggering an altered epigenetic balance of active versus inactive marks. The downregulated genes in the inactive muscles included genes essential for muscle structure and function, carbohydrate metabolism, longevity, and others. Given the multiple analogous genes in Drosophila for many human genes, extrapolating our findings to humans may hold promise for establishing a molecular link between sedentary behavior and metabolic diseases.

Funder

The French Muscular Dystrophy Association

Israel Science Foundation

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prevention by Heat Stimulation of Metabolic Syndrome Progression Based upon the Underlying Molecular Mechanism;Metabolic Syndrome - Lifestyle and Biological Risk Factors [Working Title];2024-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3