Presynaptic Release-Regulating Sphingosine 1-Phosphate 1/3 Receptors in Cortical Glutamatergic Terminals: Adaptations in EAE Mice and Impact of Therapeutic FTY720

Author:

Roggeri Alessandra1,Olivero Guendalina1,Usai Cesare2,Vanmierlo Tim34ORCID,Pittaluga Anna56ORCID

Affiliation:

1. Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy

2. Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genoa, Italy

3. Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, B-3590 Hasselt, Belgium

4. Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands

5. Department of Pharmacy (DiFar), Center of Excellence for Biomedical Research, 3Rs Center, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy

6. IRCCS Ospedale Policlinico San Martino, 16145 Genoa, Italy

Abstract

This study provides evidence of the existence of presynaptic inhibitory sphingosine-1-phosphate receptor 1 (S1P1R) and facilitatory S1P3R in cortical nerve endings (synaptosomes) of healthy mice. The conclusion relies on the findings that (i) the S1P1R agonist CS-2100 (0.1–30 nM) inhibits the 12 mM KCl-evoked glutamate exocytosis (quantified as the release of [3H]D-aspartate) while the S1P3R allosteric agonist CYM-5541 potentiates it and (ii) these effects are inhibited by the S1P1R antagonist Ex 26 (30–300 nM) and the S1P3R antagonist TY-52156 (100–1000 nM), respectively. Confocal microscopy and western blot analysis confirmed the presence of S1P1R and S1P3R proteins in cortical glutamatergic synaptosomes, which were scarcely accessible to biotin in a biotinylation study. Then, we demonstrated that S1P1R and S1P3R densities and their release activity are amplified in cortical synaptosomes of mice suffering from experimental autoimmune encephalomyelitis (EAE), despite receptors maintain their preferential internal distribution. Receptor changes recover following chronic oral therapeutic FTY720 (0.03 mg/Kg/day). These results improve our knowledge of the role of presynaptic release-regulating S1P1Rs and S1P3Rs controlling glutamate transmission in the CNS also unravelling functional adaptations during EAE that recover following chronic FTY720. In a whole, these findings provide new information on the central neuroprotectant activities of FTY720.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3