SIRT3 Deficiency Enhances Ferroptosis and Promotes Cardiac Fibrosis via p53 Acetylation

Author:

Su Han1,Cantrell Aubrey C.1ORCID,Chen Jian-Xiong1ORCID,Gu Wei2,Zeng Heng1

Affiliation:

1. Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA

2. Institute for Cancer Genetics, Columbia University, 1130 Nicholas Avenue, New York, NY 10032, USA

Abstract

Cardiac fibrosis plays an essential role in the development of diastolic dysfunction and contributes to heart failure with preserved ejection fraction (HFpEF). Our previous studies suggested Sirtuin 3 (SIRT3) as a potential target for cardiac fibrosis and heart failure. In the present study, we explored the role of SIRT3 in cardiac ferroptosis and its contribution to cardiac fibrosis. Our data showed that knockout of SIRT3 resulted in a significant increase in ferroptosis, with increased levels of 4-hydroxynonenal (4-HNE) and downregulation of glutathione peroxidase 4 (GPX-4) in the mouse hearts. Overexpression of SIRT3 significantly blunted ferroptosis in response to erastin, a known ferroptosis inducer, in H9c2 myofibroblasts. Knockout of SIRT3 resulted in a significant increase in p53 acetylation. Inhibition of p53 acetylation by C646 significantly alleviated ferroptosis in H9c2 myofibroblasts. To further explore the involvement of p53 acetylation in SIRT3-mediated ferroptosis, we crossed acetylated p53 mutant (p534KR) mice, which cannot activate ferroptosis, with SIRT3KO mice. SIRT3KO/p534KR mice exhibited a significant reduction in ferroptosis and less cardiac fibrosis compared to SIRT3KO mice. Furthermore, cardiomyocyte-specific knockout of SIRT3 (SIRT3-cKO) in mice resulted in a significant increase in ferroptosis and cardiac fibrosis. Treatment of SIRT3-cKO mice with the ferroptosis inhibitor ferrostatin-1 (Fer-1) led to a significant reduction in ferroptosis and cardiac fibrosis. We concluded that SIRT3-mediated cardiac fibrosis was partly through a mechanism involving p53 acetylation-induced ferroptosis in myofibroblasts.

Funder

National Institute of General Medical Sciences and National Heart, Lung, and Blood Institute

National Institute of General Medical Sciences of the National Institutes of Health

National Heart, Lung, and Blood Institute

University of Mississippi Medical Center Intramural Research Support Program

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3