Characteristics of Serum Exosomes after Burn Injury and Dermal Fibroblast Regulation by Exosomes In Vitro

Author:

Ding Jie1,Pan Yingying1,Raj Shammy2,Schaffrick Lindy1ORCID,Wong Jolene1,Nguyen Antoinette1,Manchikanti Sharada1,Unsworth Larry2ORCID,Kwan Peter1,Tredget Edward1

Affiliation:

1. Wound Healing Research Group, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada

2. Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2S2, Canada

Abstract

(1) Background: Exosomes (EXOs) have been considered a new target thought to be involved in and treat wound healing. More research is needed to fully understand EXO characteristics and the mechanisms of EXO-mediated wound healing, especially wound healing after burn injury. (2) Methods: All EXOs were isolated from 85 serum samples of 29 burn patients and 13 healthy individuals. We characterized the EXOs for morphology and density, serum concentration, protein level, marker expression, size distribution, and cytokine content. After a confirmation of EXO uptake by dermal fibroblasts, we also explored the functional regulation of primary human normal skin and hypertrophic scar fibroblast cell lines by the EXOs in vitro, including cell proliferation and apoptosis. (3) Results: EXOs dynamically changed their morphology, density, size, and cytokine level during wound healing in burn patients, which were correlated with burn severity and the stages of wound healing. EXOs both from burn patients and healthy individuals stimulated dermal fibroblast proliferation and apoptosis. (4) Conclusions: EXO features may be important signals that influence wound healing after burn injury; however, to understand the mechanisms by which EXOs regulates the fibroblasts in healing wounds, further studies will be required.

Funder

Firefighters Burn Treatment Unit research, patient care, and education fund

Publisher

MDPI AG

Subject

General Medicine

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3