Synergetic Effect of the Mixed Anionic/Non-Ionic Collectors in Low Temperature Flotation of Scheelite

Author:

Chen ChenORCID,Zhu Hailing,Sun Wei,Hu Yuehua,Qin Wenqing,Liu Runqing

Abstract

The synergetic effect of four octaphenyl polyoxyethyienes (TX) on low temperature flotation of scheelite at 9–11 °C was investigated through flotation experiments, and the adsorption mechanism was studied by way of surface tension, zeta potential, and adsorption measurement. The results show that the presence of the four octaphenyl polyoxyethyienes can improve scheelite flotation in a low concentration range, and their synergetic effects increase with the increase of the oxyethyl group (EO) number in their molecular structure, the mixed sodium oleate/TX-15 collector exhibits the best collecting performance for scheelite. Compared with sodium oleate alone, a larger reduced value of zeta potential is seen in the presence of the mixed collectors, and the adsorption of sodium oleate on the scheelite surface is enhanced for a constant sodium oleate concentration. Moreover, the synergetic effect of TX-15 can be well demonstrated through surface tension measurement, a lower critical micelle concentration (CMC) value of the mixed sodium oleate/TX-15 surfactant is obtained, indicating a higher surface property. Therefore, the mixed sodium oleate/TX-15 collector is suitable for low temperature flotation of scheelite.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference25 articles.

1. Chemical Principle of Flotation Reagents;Zhu,1996

2. Methods for improving flotation performance of carboxylic acids collectors;Chen;Met. Ore Dress. Abroad,2003

3. Separation of salt-type minerals by flotation using structurally modified collectors;Somasundaran,1991

4. Phosphate flotation with modified fatty acid;Yang;J. Wuhan Inst. Technol.,2014

5. Research on chemical-physical properties and flotation performance of modified fatty acids;Yu;J. Wuhan Inst. Technol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3