Diagenesis and Reservoir Properties of the Permian Ecca Group Sandstones and Mudrocks in the Eastern Cape Province, South Africa

Author:

Baiyegunhi Christopher,Liu Kuiwu,Gwavava Oswald

Abstract

Diagenesis is one of the most important factors that affects reservoir rock property. Despite the fact that published data gives a vast amount of information on the geology, sedimentology, and lithostratigraphy of the Ecca Group in the Karoo Basin of South Africa, little is known about the diagenesis of the potentially feasible or economically viable sandstones and mudrocks of the Ecca Group. This study aims to provide an account of the diagenesis of sandstones and mudstones from the Ecca Group. Twenty-five diagenetic textures and structures were identified and grouped into three stages that include early diagenesis, burial diagenesis and uplift-related diagenesis. Clay minerals are the most common cementing materials in the sandstones. Smectite, kaolinite, and illite are the major clay minerals that act as pore lining rims and pore-filling materials. A part of the clay minerals and detrital grains was strongly replaced by calcite. Calcite precipitates locally in the pore spaces and partially or completely replaced clay matrix, feldspar, and quartz grains at or around their margins. Precipitation of cements and formation of pyrite and authigenic minerals occurred during the early diagenetic stage. This process was followed by lithification and compaction which brought about an increase in tightness of grain packing, loss of pore spaces, and thinning of bedding thickness due to overloading of sediments and selective dissolution of the framework grains. Mineral overgrowths, mineral replacement, clay-mineral transformation, dissolution, deformation, and pressure solution occurred during burial diagenetic stage. After rocks were uplifted, weathered and unroofed by erosion, this resulted in decementation and oxidation of iron-rich minerals. The rocks of the Ecca Group were subjected to moderate-intense mechanical and chemical compaction during their progressive burial. Intergranular pores, secondary dissolution, and fractured pores are well developed in the sediments of the Ecca Group. The presence of fractured and dissolution pores tend to enhance reservoir quality. However, the isolated nature of the pore linkage makes them unfavorable producers of hydrocarbons, which at best would require stimulation. The understanding of the space and time distribution of diagenetic processes in these rocks will allow the development of predictive models of their reservoir quality, which may contribute to the reduction of risks involved in hydrocarbon (oil and gas) exploration.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3