Mitigating Built Environment Air Pollution by Green Systems: An In-Depth Review

Author:

Vitaliano Serena1ORCID,Cascone Stefano2ORCID,D’Urso Provvidenza Rita1ORCID

Affiliation:

1. Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia n. 100, 95123 Catania, Italy

2. Department of Architecture and Territory, Mediterranea University of Reggio Calabria, Via dell’Università n. 25, 89124 Reggio Calabria, Italy

Abstract

Air pollution is a critical issue impacting urban environments, leading to severe health problems and environmental degradation. This comprehensive review examines the potential of green systems—specifically green walls, active green walls, and urban greenery systems—to mitigate atmospheric pollutants such as particulate matter (PM), volatile organic compounds (VOCs), and carbon dioxide (CO2). By systematically analyzing 44 recent studies, this review highlights the pollutant capture efficiency of various green technologies and plant species in both indoor and outdoor settings. Active green walls, particularly those utilizing plant species such as Chlorophytum comosum and Sansevieria trifasciata, were found to be highly effective, with VOC reduction efficiencies of up to 96.34%, PM reductions of 65.42%, and CO2 reduction rates reaching 4.8% under optimal conditions. This review identifies key strengths in current research, including diverse experimental setups and the use of sophisticated measurement techniques, but also notes significant limitations such as variability in experimental conditions and a lack of long-term performance data. This study underscores the importance of proper maintenance to sustain green systems’ efficacy and highlights the potential issue of pollutant resuspension, which remains under-researched. Practical implications for urban planning are discussed, advocating for the integration of effective green systems into urban infrastructure to enhance air quality and public health. Recommendations for future research include the need for standardized metrics, long-term studies, economic feasibility analyses, and real-world validation of simulation models to better understand and optimize green systems for urban air pollution mitigation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3