Evaluation of Superparamagnetic Fe3O4-Ag Decorated Nanoparticles: Cytotoxicity Studies in Human Fibroblasts (HFF-1) and Breast Cancer Cells (MCF-7)

Author:

Ruíz-Baltazar Álvaro de Jesús12ORCID,Reyes-López Simón Yobanny2ORCID,Méndez-Lozano Néstor3ORCID,Juárez-Moreno Karla4ORCID

Affiliation:

1. CONAHCYT-Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico

2. Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, Zona Pronaf, Ciudad Juárez 32310, Chihuahua, Mexico

3. Campus Querétaro, Universidad del Valle de México, Blvd. Juriquilla No. 1000 A Del., Santa Rosa Jáuregui, Santiago de Querétaro C.P. 76230, Querétaro, Mexico

4. Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico

Abstract

This study investigates the cytotoxicity profile of superparamagnetic Fe3O4-Ag decorated nanoparticles against human fibroblasts (HFF-1) and breast cancer cells (MCF-7). The nanoparticles underwent comprehensive characterization employing scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and magnetic assays including hysteresis curves and zero-field-cooled (ZFC) plots. The nanoparticles exhibited superparamagnetic behavior as evidenced by magnetic studies. Cytotoxicity assays demonstrated that both HFF-1 and MCF-7 cells maintained nearly 100% viability upon nanoparticle exposure, underscoring the outstanding biocompatibility of Fe3O4/Ag decorated nanoparticles and suggesting their potential utility in biomedical applications such as drug delivery and magnetic targeting. Furthermore, the study analyzed the cytotoxic effects of Fe3O4 and Fe3O4-Ag decorated nanoparticles to evaluate their biocompatibility for further therapeutic efficacy. Results showed that neither type of nanoparticle significantly reduced cell viability in HFF-1 fibroblasts, indicating non-cytotoxicity at the tested concentrations. Similarly, MCF-7 breast cancer cells did not exhibit a significant change in viability when exposed to different nanoparticle concentrations, highlighting the compatibility of these nanoparticles with both healthy and cancerous cells. Additionally, the production of reactive oxygen species (ROS) by cells exposed to the nanoparticles was examined to guarantee their biosafety for further therapeutic potential. Higher concentrations (50–100 μg/mL) of Fe3O4-Ag nanoparticles decreased ROS production in both HFF-1 and MCF-7 cells, while Fe3O4 nanoparticles were more effective in generating ROS. This differential response suggests that Fe3O4-Ag nanoparticles might modulate oxidative stress more effectively, thus beneficial for future anticancer strategies due to cancer cells’ susceptibility to ROS-induced damage. These findings contribute to understanding nanoparticle interactions with cellular oxidative mechanisms, which are crucial for developing safe and effective nanoparticle-based therapies. This investigation advances our understanding of nanostructured materials in biological settings and highlights their promising prospects in biomedicine.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3