Monitoring the Sleep Respiratory Rate with Low-Cost Microcontroller Wi-Fi in a Controlled Environment

Author:

Burimas Ratthamontree1,Horanont Teerayut1ORCID,Thapa Aakash1ORCID,Lamichhane Badri Raj1

Affiliation:

1. School of Information, Computer and Communication Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12000, Thailand

Abstract

Sleep apnea, characterized by breathing interruptions or slow breathing at night, can cause various health issues. Detecting respiratory rate (RR) using Wireless Fidelity (Wi-Fi) can identify sleep disorders without physical contact avoiding sleep disruption. However, traditional methods using Network Interface Cards (NICs) like the Intel Wi-Fi Link 5300 NIC are often costly and limited in channel state information (CSI) resolution. Our study introduces an effective strategy using the affordable ESP32 single-board computer for tracking RR through detailed analysis of Wi-Fi signal CSI. We developed a technique correlating Wi-Fi signal fluctuations with RR, employing signal processing methods—Hampel Filtering, Gaussian Filtering, Linear Interpolation, and Butterworth Low Pass Filtering—to accurately extract relevant signals. Additionally, noise from external movements is mitigated using a Z-Score for anomaly detection approach. We also implemented a local peak function to count peaks within an interval, scaling it to bpm for RR identification. RR measurements were conducted at different rates—Normal (12–16 bpm), Fast (>16 bpm), and Slow (<12 bpm)—to assess the effectiveness in both normal and sleep apnea conditions. Tested on data from 8 participants with distinct body types and genders, our approach demonstrated accuracy by comparing modeled sleep RR against actual RR measurements from the Vernier Respiration Monitor Belt. Optimal parameter settings yielded an overall average mean absolute deviation (MAD) of 2.60 bpm, providing the best result for normal breathing (MAD = 1.38). Different optimal settings were required for fast (MAD = 1.81) and slow breathing (MAD = 2.98). The results indicate that our method effectively detects RR using a low-cost approach under different parameter settings.

Funder

Thammasat University Research Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3