Analytical Investigation of Vertical Force Control in In-Wheel Motors for Enhanced Ride Comfort

Author:

Bunlapyanan Chanoknan1,Chantranuwathana Sunhapos1,Phanomchoeng Gridsada12ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

2. Human-Robot Collaboration and Systems Integration Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

This study explores the effectiveness of vertical force control in in-wheel motors (IWMs) to enhance ride comfort in electric vehicles (EVs). A dynamic vehicle model and a proportional ride-blending controller were used to reduce vertical vibrations of the sprung mass. By converting the state-space model into a transfer function, the system’s frequency response was evaluated using road profiles generated according to ISO 8608 standards and converted into Power Spectral Density (PSD) inputs. The frequency-weighted acceleration (aw) was calculated based on ISO 2631 standards to measure ride comfort improvements. The results showed that increasing the proportional gain (Kp) effectively reduced the frequency-weighted acceleration and the RMS of the vertical acceleration of the sprung mass. However, the proportional gain could not be increased indefinitely due to the torque limitations of the IWMs. Optimal proportional gains for various road profiles demonstrated significant improvements in ride comfort. This study concludes that advanced suspension technologies, including the proportional ride-blending controller, can effectively mitigate the challenges of increased unsprung mass in IWM vehicles, thereby enhancing ride quality and vehicle dynamics.

Funder

Thailand Science Research and Innovation Fund of Chulalongkorn University

Ratchadaphiseksomphot Endowment Fund of Chulalongkorn Universit

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3