Evaluation of the Mineral Manganese OXMN009 and OXMN009P in the Chemical Looping Combustion (CLC) Process Using Thermogravimetry

Author:

Peña Murillo Sandra1ORCID,Forero Carmen2ORCID,Velasco-Sarria Francisco2ORCID,Arango Eduardo2ORCID

Affiliation:

1. University of Guayaquil, Guayaquil 090514, Ecuador

2. University of Valle, Cali 760042, Colombia

Abstract

Indirect combustion with the chemical looping combustion (CLC) of solid oxygen carriers is one of the most promising technologies for capturing carbon dioxide (CO2) in energy production from fossil fuels since the separation of the generated CO2 is inherent to the process itself. Therefore, the cost associated with capturing this gas will be significantly reduced. This technology transfers oxygen from air to fuel through a metal oxide that acts as an oxygen carrier, avoiding direct contact between air and fuel. This oxygen carrier circulates in a fluidized bed reactor called a reduction reactor and an oxidation reactor. (1) This research work has focused on evaluating the behavior of oxygen carriers based on the original and improved manganese mineral (copper-impregnated mineral) named for this study, OXMN009 and OXMN009P, respectively. (2) Equilibrium experiments were carried out on a thermogravimetric balance (TGA) to evaluate the kinetic behavior of these oxygen transporters OXMN009 and OXMN009P, using the gases methane (CH4), carbon monoxide (CO), and hydrogen (H2). (3) The enhanced solid oxygen carrier OXMN009P exhibited good performance for the CLC process with gaseous fuels in terms of reactivity and combustion efficiency, having high reactivity and oxygen transfer properties due to copper impregnation. (4) The results show that OXMN009P has comparable reactivity to other manganese-based materials reported in the literature. It may be an effective option for carbon dioxide capture, as it uses metal oxides as the oxygen transporters (TO). (5) These oxygen transporters, OXMN009 and OXMN009P, are used in a cyclic process that prevents the formation of nitrogen oxides by keeping the air and fuel separate. (6) Thermogravimetric balance (TGA) experiments were conducted to evaluate the kinetic behavior of these copper-modified oxygen transporters. (7) It was found that OXMN009P improved the reactivity and oxygen transfer properties due to copper impregnation. The kinetic parameters obtained in the TGA indicate that the reaction is non-thermal and requires less energy to initiate. (8) The results show that OXMN009P has reactivity comparable to other manganese-based materials reported in the literature and can be an effective option for carbon dioxide capture.

Funder

call Ecosistema Científico

Coal Science and Technology Laboratory of the Universidad del Valle, Cali-Colombia

Publisher

MDPI AG

Reference29 articles.

1. Carbon Capture, Utilization and Storage (CCUS);Yan;Appl. Energy,2019

2. Estado actual del proceso de combustión con transportadores sólidos de oxígeno;Bol. Grupo Español Carbón Estado,2015

3. Benavides, H. (2007). Información Técnica Sobre Gases de Efecto Invernadero y el Cambio Climático, Ideam.

4. Biomass combustion with CO2 capture by chemical looping with oxygen uncoupling (CLOU);Abad;Fuel Process. Technol.,2014

5. Biomass combustion in a CLC system using an iron ore as an oxygen carrier;Mendiara;Int. J. Greenh. Gas Control,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3