Towards a 3D Printed Strain Sensor Employing Additive Manufacturing Technology for the Marine Industry

Author:

Kouvatsos Theodoros1,Pagonis Dimitrios Nikolaos12ORCID,Iakovidis Isidoros1,Kaltsas Grigoris2ORCID

Affiliation:

1. Naval Architecture Department, University of West Attica, 122 43 Athens, Greece

2. microSENSES Laboratory, Electrical & Electronic Engineering Department, University of West Attica, 122 43 Athens, Greece

Abstract

This study focuses on the successful fabrication of a cost-effective strain sensor using exclusively additive manufacturing Fused Deposition Modeling (FDM) technology, enabling fast on-site production, which is particularly advantageous in maritime settings, reducing downtime, and supporting a circular economy approach by minimizing inventory needs and environmental footprint. The principle of operation of the developed device is based on the piezoresistive characteristics of a carbon nanotube (CNT)-enriched building material, from which the main sensing element consists. The prototype exhibited reliable piezoresistive properties, and a clear correlation was observed between the thermal treatment of the printed piezoresistor and the resulting gauge factor, linearity, and hysteresis. Its robustness, simple design, and single-step manufacturing process, together with its ability to be integrated into the readout circuitry through standard soldering, enhance its reliability and durability. The key advantages of the proposed device include its low cost, simple design, and rapid remote production.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3