Application Study of the High-Strain Direct Dynamic Testing Method

Author:

Qiu Hongsheng1,He Hengli1,Ayasrah Mo’men2ORCID,Huang Weihong3

Affiliation:

1. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China

2. Department of Civil Engineering, Faculty of Engineering, Al Al-Bayt University, Mafraq 25113, Jordan

3. School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China

Abstract

The high-strain direct testing method is a novel technique for dynamic testing of pile bearing capacity, developed as an improvement to the traditional high-strain method. While its theoretical feasibility has been demonstrated through numerical simulations and laboratory experiments, its effectiveness in practical engineering applications remains uncertain. This paper discusses the foundational theory of the high-strain direct testing method, highlighting its clear calculation principles, straightforward process, and advantage of not requiring iterative fitting. The bridge project in Zhuhai, Guangdong Province, China, serves as a case study. An instrumentation layout for concrete-filled piles was designed based on the principles of the high-strain direct testing method, and data processing and analysis programs were developed using Python. Fifteen test piles were selected for field application of the high-strain direct testing method, with detailed analysis conducted on the results from four test piles. The test results were consistent with the soil layer distribution characteristics beneath the four piers of the bridge, validating the feasibility of this method in actual engineering practice. Subsequent static load tests on these four test piles allowed for a comparison with the high-strain direct testing method results, confirming the accuracy and reliability of the high-strain direct testing method for determining the bearing capacity of single piles. Furthermore, this paper identifies sources of error in the application of this method and proposes corresponding improvement measures. As this method directly derives results from instrumented measurements, it is theoretically applicable to piles of any cross-sectional shape and material, provided that enough measurement lines can be successfully arranged along the pile shaft. This capability allows for the real-time estimation of the ultimate bearing capacity during pile driving, thereby enhancing the universality of the high-strain direct dynamic testing method beyond traditional techniques.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3