New Web-Based Ventilator Monitoring System Consisting of Central and Remote Mobile Applications in Intensive Care Units

Author:

Kim Kyuseok12ORCID,Kim Yeonkyeong23,Kim Young Sam3ORCID,Kim Kyu Bom24,Lee Su Hwan3ORCID

Affiliation:

1. Department of Biomedical Engineering, Eulji University, 533, Sanseong-daero, Sujung-gu, Seongnam-si 13135, Republic of Korea

2. 2TS Corporation, 16, Digital-ro, 32ga-gil, Guro-gu, Seoul 08393, Republic of Korea

3. Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

4. Department of Radiation Convergence Engineering, Yonsei University, 1, Yeonsedae-gil, Heungeopmyeon, Wonju-si 26493, Republic of Korea

Abstract

A ventilator central monitoring system (VCMS) that can efficiently respond to and treat patients’ respiratory issues in intensive care units (ICUs) is critical. Using Internet of Things (IoT) technology without loss or delay in patient monitoring data, clinical staff can overcome spatial constraints in patient respiratory management by integrated monitoring of multiple ventilators and providing real-time information through remote mobile applications. This study aimed to establish a VCMS and assess its effectiveness in an ICU setting. A VCMS comprises central monitoring and mobile applications, with significant real-time information from multiple patient monitors and ventilator devices stored and managed through the VCMS server, establishing an integrated monitoring environment on a web-based platform. The developed VCMS was analyzed in terms of real-time display and data transmission. Twenty-one respiratory physicians and staff members participated in usability and satisfaction surveys on the developed VCMS. The data transfer capacity derived an error of approximately 10−7, and the difference in data transmission capacity was approximately 1.99×10−7±9.97×10−6 with a 95% confidence interval of −1.16×10−7 to 5.13×10−7 among 18 ventilators and patient monitors. The proposed VCMS could transmit data from various devices without loss of information within the ICU. The medical software validation, consisting of 37 tasks and 9 scenarios, showed a task completion rate of approximately 92%, with a 95% confidence interval of 88.81–90.43. The satisfaction survey consisted of 23 items and showed results of approximately 4.66 points out of 5. These results demonstrated that the VCMS can be readily used by clinical ICU staff, confirming its clinical utility and applicability. The proposed VCMS can help clinical staff quickly respond to the alarm of abnormal events and diagnose and treat based on longitudinal patient data. The mobile applications overcame space constraints, such as isolation to prevent respiratory infection transmission of clinical staff for continuous monitoring of respiratory patients and enabled rapid consultation, ensuring consistent care.

Funder

Korea Medical Device Development Fund

National Research Foundation of Korea

Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3