Ab Initio Investigation of Oxygen Ion Diffusion in the Layered Perovskite System YSr2Cu2FeO7+δ (0 < δ < 1)

Author:

Gómez-Toledo Marianela1ORCID,Arroyo-de Dompablo Elena M.1ORCID

Affiliation:

1. Departamento de Química Inorgánica, Universidad Complutense de Madrid, 28040 Madrid, Spain

Abstract

Extensive research on transition metal perovskite oxides as electrodes in solid oxide cells (SOC) has highlighted the potential ability of Fe-based perovskite oxides to catalyze oxygen reduction/evolution reactions (ORR/OER). The layered perovskite-type system YSr2Cu2FeO7+δ has been reported to possess attractive electrocatalytic properties. This work applies density functional theory (DFT) calculations to investigate oxygen ion diffusion in the YSr2Cu2FeO7+δ system. For δ = 0.5, it is found that in the most stable configuration, the oxygen vacancies in the FeO1+δ plane are arranged to form Fe ions in tetrahedral, square pyramid, and octahedral coordination. Ab initio molecular dynamics (AIMD) simulations for YSr2Cu2FeO7.5 (δ = 0.5) yield an oxygen ion diffusion coefficient of 1.28 × 10−7 cm2/s at 500 °C (Ea = 0.37 eV). Complementary results for YSr2Cu2FeO7.2 (δ = 0.2) and YSr2Cu2FeO7.75 (δ = 0.75) indicate that the oxygen diffusion occurs in the FeO1+δ plane, and depends on the oxygen vacancies distribution around the Fe centers.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

MDPI AG

Reference43 articles.

1. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review;Calles;Energy Fuels,2021

2. Operational and scaling-up barriers of SOEC and mitigation strategies to boost H2 production- a comprehensive review;Jolaoso;Int. J. Hydrogen Energy,2023

3. Alternative and innovative solid oxide electrolysis cell materials: A short review;Nechache;Renew. Sustain. Energy Rev.,2021

4. Chemical design of oxygen electrodes for solid oxide electrochemical cells: A guide;Tarutin;Sustain. Energy Technol. Assess.,2023

5. A mini review of the recent progress of electrode materials for low-temperature solid oxide fuel cells;Hu;Phys. Chem. Chem. Phys.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3