Violence-YOLO: Enhanced GELAN Algorithm for Violence Detection

Author:

Xu Wenbin1,Zhu Dingju12,Deng Renfeng1,Yung KaiLeung3,Ip Andrew W. H.4ORCID

Affiliation:

1. School of Software, South China Normal University, Foshan 528000, China

2. School of Computer Science, South China Normal University, Guangzhou 510000, China

3. Department of Industrial and Systems Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China

4. Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada

Abstract

Violence is a serious threat to societal health; preventing violence in airports, airplanes, and spacecraft is crucial. This study proposes the Violence-YOLO model to detect violence accurately in real time in complex environments, enhancing public safety. The model is based on YOLOv9’s Generalized Efficient Layer Aggregation Network (GELAN-C). A multilayer SimAM is incorporated into GELAN’s neck to identify attention regions in the scene. YOLOv9 modules are combined with RepGhostNet and GhostNet. Two modules, RepNCSPELAN4_GB and RepNCSPELAN4_RGB, are innovatively proposed and introduced. The shallow convolution in the backbone is replaced with GhostConv, reducing computational complexity. Additionally, an ultra-lightweight upsampler, Dysample, is introduced to enhance performance and reduce overhead. Finally, Focaler-IoU addresses the neglect of simple and difficult samples, improving training accuracy. The datasets are derived from RWF-2000 and Hockey. Experimental results show that Violence-YOLO outperforms GELAN-C. mAP@0.5 increases by 0.9%, computational load decreases by 12.3%, and model size is reduced by 12.4%, which is significant for embedded hardware such as the Raspberry Pi. Violence-YOLO can be deployed to monitor public places such as airports, effectively handling complex backgrounds and ensuring accurate and fast detection of violent behavior. In addition, we achieved 84.4% mAP on the Pascal VOC dataset, which is a significant reduction in model parameters compared to the previously refined detector. This study offers insights for real-time detection of violent behaviors in public environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3