Excavation Method Comparison and Optimization for a Super Large Cross-Section Tunnel

Author:

Huang Yingjing1,Fang Tao1,Wang Ning2ORCID

Affiliation:

1. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 310013, China

2. School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China

Abstract

Characterized by long spans, low aspect ratios, and intricate construction sequences, super-large cross-section tunnels present substantial construction risks. Therefore, the selection of the optimal excavation method and construction sequence is crucial for ensuring the safety of tunnel construction and minimizing project costs. This paper takes a super large transverse-section highway tunnel as a case study, employing field monitoring data combined with ABAQUS software to analyze the stress and deformation of surrounding rock and support structures under different excavation methods. The findings reveal that the deformation of surrounding rock and support structures excavated by the Double-Side Drift Method is smaller than those caused by the three-benching seven-step method and the CRD excavation method. Nevertheless, the significant stresses of surrounding rock and support structures are released by the Double-Side Drift Method, leading to potential stress concentrations. Thus, it is necessary to ensure the rapid completion of early support and quick sealing of the tunnel. Furthermore, the sixth process achieves smaller deformation (including arch displacement and surface settlement) of the tunnel, a shorter construction period, and lower economic costs when compared to other construction processes. Consequently, it can obviously be concluded that both the Double-Side Drift Method and the sixth construction process stand out as the most appropriate choices for excavating super large cross-section tunnels. The insights obtained from this study provide theoretical guidance for the design and construction of similar tunnel projects.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3