Optimizing Recurrent Neural Networks: A Study on Gradient Normalization of Weights for Enhanced Training Efficiency

Author:

Wu Xinyi1,Xiang Bingjie1,Lu Huaizheng2,Li Chaopeng1,Huang Xingwang2ORCID,Huang Weifang1

Affiliation:

1. School of Ocean Information Engineering, Jimei University, Xiamen 361021, China

2. College of Computer Engineering, Jimei University, Xiamen 361021, China

Abstract

Recurrent Neural Networks (RNNs) are classical models for processing sequential data, demonstrating excellent performance in tasks such as natural language processing and time series prediction. However, during the training of RNNs, the issues of vanishing and exploding gradients often arise, significantly impacting the model’s performance and efficiency. In this paper, we investigate why RNNs are more prone to gradient problems compared to other common sequential networks. To address this issue and enhance network performance, we propose a method for gradient normalization of network weights. This method suppresses the occurrence of gradient problems by altering the statistical properties of RNN weights, thereby improving training effectiveness. Additionally, we analyze the impact of weight gradient normalization on the probability-distribution characteristics of model weights and validate the sensitivity of this method to hyperparameters such as learning rate. The experimental results demonstrate that gradient normalization enhances the stability of model training and reduces the frequency of gradient issues. On the Penn Treebank dataset, this method achieves a perplexity level of 110.89, representing an 11.48% improvement over conventional gradient descent methods. For prediction lengths of 24 and 96 on the ETTm1 dataset, Mean Absolute Error (MAE) values of 0.778 and 0.592 are attained, respectively, resulting in 3.00% and 6.77% improvement over conventional gradient descent methods. Moreover, selected subsets of the UCR dataset show an increase in accuracy ranging from 0.4% to 6.0%. The gradient normalization method enhances the ability of RNNs to learn from sequential and causal data, thereby holding significant implications for optimizing the training effectiveness of RNN-based models.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Xiamen Municipality

Youth Program of the Natural Science Foundation of Fujian Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3