A Novel Method for Parameter Identification of Renewable Energy Resources based on Quantum Particle Swarm–Extreme Learning Machine

Author:

Xu Baojun1,Yin Yanhe1,Yu Junjie1,Li Guohao1,Li Zhuohuan2,Yang Duotong2

Affiliation:

1. Zhongshan Power Supply Bureau of Guangdong Power Grid Co., Ltd., Zhongshan 528499, China

2. Digital Grid Research Institute, China Southern Power Grid, Guangzhou 510663, China

Abstract

Accurately determining load model parameters is of the utmost importance for conducting power system simulation analysis and designing effective control strategies. Measurement-based approaches are commonly employed to identify load model parameters that closely reflect the actual operating conditions. However, these methods typically rely on iterative parameter search processes, which can be time-consuming, particularly when dealing with complex models. To address this challenge, this paper introduces a parameter identification method for the generalized synthetic load model (SLM) using the Extreme Learning Machine (ELM) technique, with the aim of enhancing computational efficiency. Furthermore, to achieve better alignment with load response curves, a Quantum Particle Swarm Optimization (QPSO) algorithm is adopted to train the ELM model. The proposed QPSO-ELM-based SLM parameter identification method is subsequently evaluated using a standard test system. To assess its effectiveness, parameter sensitivity analysis is performed, and simulation results are analyzed. The findings demonstrate that the proposed method yields favorable outcomes, offering improved computation efficiency in load model parameter identification tasks.

Funder

Science and Technology Project of China Southern Power Grid Co., Ltd.

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3