Feasibility of a Sensor-Based Gait Event Detection Algorithm for Triggering Functional Electrical Stimulation during Robot-Assisted Gait Training

Author:

Schicketmueller AndreasORCID,Rose Georg,Hofmann Marc

Abstract

Technologies such as robot-assisted gait trainers or functional electrical stimulation can improve the rehabilitation process of people affected with gait disorders due to stroke or other neurological defects. By combining both technologies, the potential disadvantages of each technology could be compensated and simultaneously, therapy effects could be improved. Thus, an algorithm was designed that aims to detect the gait cycle of a robot-assisted gait trainer. Based on movement data recorded with inertial measurement units, gait events can be detected. These events can further be used to trigger functional electrical stimulation. This novel setup offers the possibility of equipping a broad range of potential robot-assisted gait trainers with functional electrical stimulation. The aim of this paper in particular was to test the feasibility of a system using inertial measurement units for gait event detection during robot-assisted gait training. Thus, a 39-year-old healthy male adult executed a total of six training sessions with two robot-assisted gait trainers (Lokomat and Lyra). The measured data from the sensors were analyzed by a custom-made gait event detection algorithm. An overall detection rate of 98.1% ± 5.2% for the Lokomat and 94.1% ± 6.8% for the Lyra was achieved. The mean type-1 error was 0.3% ± 1.2% for the Lokomat and 1.9% ± 4.3% for the Lyra. As a result, the setup provides promising results for further research and a technique that can enhance robot-assisted gait trainers by adding functional electrical stimulation to the rehabilitation process.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. Seven Capital Devices for the Future of Stroke Rehabilitation

2. Electromechanical-assisted training for walking after stroke

3. Alterations in muscle activation patterns during robotic-assisted walking

4. Lokomotionstherapie: Ein Praxisorientierter Überblick;Hesse,2007

5. Functional Electrical Stimulation (FES) for Stroke Rehabilitation,2006

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3